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A method to synchronize two chaotic systems with anticipation or lag, coupled in the drive response mode,
is proposed. The coupling involves variable delay with three time scales. The method has the advantage that
synchronization is realized with intermittent information about the driving system at intervals fixed by a reset
time. The stability of the synchronization manifold is analyzed with the resulting discrete error dynamics. The
numerical calculations in standard systems such as the Rössler and Lorenz systems are used to demonstrate the
method and the results of the analysis.
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I. INTRODUCTION

The synchronization of unidirectionally coupled chaotic
systems has been studied reasonably well in the past few
years �1–3�. The synchronization state in such cases can be
phase, lag, generalized, or complete depending on the
strength of the coupling �4,5�. Recently synchronization of
systems via coupling with a time delay, which presumably
takes care of the finite propagation times, switching speeds,
and memory effects have been reported �6–9�. Such studies
relate to a variety of diverse phenomena such as chirping of
crickets, neural networks, automatic steering and control,
and coupled phase-locked lasers �10–12�. When the coupling
is not isochronous with the system dynamics, it is possible to
realize retarded �delay�, complete, and anticipatory synchro-
nizations of chaotic systems. Moreover, synchronization in
such cases reveals many novel phenomena such as paramet-
ric resonance �13�, multistable phase clustering �14–17�, am-
plitude death, etc. �18–20�. An interesting aspect of such a
delay-induced synchronization, which has attracted a lot of
attention, is that the driven system can anticipate the dynam-
ics of the driver �21,22�. The maximum possible anticipation
time is reported to be enhanced considerably by using an
array or ring of such systems �23–25�. Experimental verifi-
cation of anticipatory and retarded synchronizations is re-
ported in electronic circuits as well as semiconductor lasers
with delayed optoelectronic feedback �26,27�. In all these
studies, the delay time in the coupling, once chosen, remains
constant as the system evolves.

The synchronization of chaotic systems, in general, has
attracted great attention due to its potential application in
secure communication �28–30�. However the use of low-
dimensional systems in this context is found to be insecure
due to the ease of reconstruction from the transmitted signal
�31,32�. Therefore, recently, chaos synchronization in high-
dimensional systems, especially systems with an inherent
time delay, has been proposed as a better alternative �33–37�.

In this paper we propose a method of delay or anticipatory
synchronization with coupling involving variable time delay.
Here, the synchronization can be realized with limited infor-
mation about the driver via occasional contacts or feedbacks
at specific intervals. This makes the method highly cost ef-
fective and can be applied to cases where the signal trans-
mission from the driver is slow or intermittent. This is
achieved by using a variable delay in the coupling that is
reset at definite intervals. The dynamics then evolves under
three additional time scales, the delay �1, the anticipatory
time �2, and the reset time �. Unlike the case of fixed delay,
the resetting mechanism makes the error dynamics discrete
and it is possible to carry out an approximate analytic analy-
sis. The analysis gives the maximum �2 for a given �. This
also fixes the regions of stability in the parameter plane of
coupling and delay. The method is demonstrated for standard
systems such as Rössler and Lorenz.

In addition to being novel, the method of anticipatory
synchronization with variable delay and reset proposed here
may be useful in secure communication. First, there are three
time scales in the system which may lead to enhanced secu-
rity. Second, the transmission load is less since the signal is
needed only at the resetting time. This potential application
and the likely benefits that may occur are further discussed in
Sec. VI.

II. SYNCHRONIZATION WITH VARYING DELAY
AND RESET

A. Model system

Consider a dynamical system x of dimension n that drives
an identical system y. We choose a simple coupling term of
the linear difference type but with the drive variable delayed
by �1 and the driven variable delayed by �2. Thus, the dy-
namics is given by

ẋ = f�x� , �1a�

ẏ = f�y� + ��
m=0

�

��xt1
− yt2

���m�,�m+1���, �1b�

where xt1
=x�t− t1�, yt2

=y�t− t2�, � is the resetting time, and
��t�,t�� is an indicator function such that ��t�,t��=1 for t�� t
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� t� and zero otherwise. Here, � is a matrix specifying the
coupling between the components of x and y. For simplicity,
we take � to be diagonal, �=diag��1 ,�2 , . . . ,�n�, and in
numerical simulations only one component �i is assumed to
be nonzero. Both the delays t1 and t2 depend on time and we
choose this dependence as

ti = �i + t − m�, i = 1,2.

Thus, t− ti=m�−�i and this time dependence along with the
indicator function ensure that ti�0. As the two systems
evolve, t1 and t2 also evolve with the same time scale and the
coupling term uses the same value of both variables xt1

and
yt2

during each resetting time interval �, i.e., the coupling
term is constant for the time interval �. In each time interval
�, the initial values of the delays t1 and t2 are �1 and �2,
respectively. The delays increase linearly with time up to
values �1+� and �2+� and then they are reset for the next
interval. As a consequence, the coupling requires the variable
of the drive system only at discrete time intervals of �. We
also note that t1− t2=�1−�2 for all t.

B. Synchronization manifold

Synchronization manifold for the coupled systems �1a�
and �1b� is defined by y�t−�2�=x�t−�1� or y�t�=x�t−�1
+�2�. Thus, we can get all the following three possibilities
�38�. �1� If �1−�2�0, we can get delay or lag synchroniza-
tion with �1−�2 as the lag time. �2� If �1−�2	0, we can get
anticipatory synchronization with �2−�1 as the anticipation
time. �3� If �1−�2=0, we can get equal time synchronization.

As an illustration of this, we take the standard Rössler
oscillator in the chaotic state as the driver described by the
equations

ẋ1 = − x2 − x3,

ẋ2 = x1 + ax2,

ẋ3 = b + x3�x1 − c� . �2�

This is coupled to an identical system through the coupling
scheme given in Eq. �1�. Only x1 and y1 are coupled, i.e.,
�1=1 and �2=�3=0. Taking the parameter values a=0.15,
b=0.2, and c=10.0, both systems are evolved from random
initial conditions using Runge Kutta algorithm with a time
step 0.01 for 2000 units of time. With �=0.10 and the cou-
pling strength �=0.4, the resulting time series obtained for
�1=0.84 and �2=0.02 is plotted in Fig. 1�a�. Here the re-
sponse system y�t� �dashed line� lags behind the driver x�t�
�solid line� by �2−�1. Figure 1�b� shows the same for �1
=0.02 and �2=0.84 where y�t� anticipates x�t� with the same
time shift. The degree of synchronization with the corre-
sponding time shift can be quantified using the similarity
function defined as

S2�T� =
��y1�t� − x1�t + T��2�

��x1
2�t���y1

2�t��
. �3�

Figures 1�c� and 1�d� show S2�T� computed for different val-
ues of T. The minimum occurs at 0.82, i.e., T= 	�1−�2	, indi-

cating synchronization with delay or anticipation of 0.82
time units.

It should be noted that the delay time �1 is not of much
significance in the error dynamics, since the time scale of the
drive system can be linearly shifted by �1. This point will
become clear when we do the stability analysis in Sec. III.

III. LINEAR STABILITY ANALYSIS

The dynamics of the system in Eq. �1� involves three time
scales in addition to its inherent scale. We define the trans-
verse system by the variable 
=y−x�1−�2

. Its dynamics in
linear approximation can be derived from Eq. �1� as


̇ = f��x�1−�2
�
 − ��

m=0

�

��m�,�m+1���
m, �4�

where 
m=
�t− t2�=
�m�−�2� and we take coupling in all
components of x and y, i.e., �i=1, ∀i. Thus, 
m is a constant
in each time interval m�� t	 �m+1��. We note that �1 enters
only through the Jacobian term f� and can be eliminated by
shifting the time scale of the drive system linearly and rede-
fining �2 suitably. Hence, as noted in Sec. II, �1 is not very
significant for the stability analysis. The fixed point 
=0
corresponds to the lag or anticipatory synchronized state.

In general, it is not possible to solve Eq. �4�. However, we
can approximate the equation by replacing the Jacobian f� by
some effective time average Lyapunov exponent � �only the
real part is required�,


̇ = �
 − ��
m=0

�

��m�,�m+1���
m. �5�

In the following analysis we assume � to be positive. The
results can be easily extended to �	0 �see Appendix C�.

From the numerical analysis presented in Sec. IV, it ap-
pears that the approximation of replacing f� by an effective �
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FIG. 1. The simulated time series of two Rössler systems
coupled through the scheme in Eq. �1�. In �a� the case of delay
synchronization is shown with a delay of 0.82 units between the
x1�t� �solid line� and y1�t� �dashed line�. �b� is a case of anticipatory
synchronization when y1�t� anticipates x1�t� by the same units. The
similarity function S2�T� corresponding to both these cases are
shown in �c� and �d�, respectively.
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is reasonable for small values of �2. We need a larger value
of � for large �2.

In the interval m�� t	 �m+1��, the solution of Eq. �5� is


 = �
m + Cme�t, �6�

where �=� /� is the normalized dimensionless coupling con-
stant and Cm is an integration constant.

A. 0��2��

Let us first consider the case 0��2��. For t= �m+1��
−�2, 
=
m+1. Thus, eliminating the integration constant, Eq.
�6�, gives


 = �
m + �
m+1 − �
m�e��t−�m+1��+�2�. �7�

For �m−1��� t�m� we have


 = �
m−1 + �
m − �
m−1�e��t−m�+�2�. �8�

Matching solutions �7� and �8� at t=m�, and simplifying, we
get the following recursion relation:


m+1 = �
1 − e���−�2� +
1

�
e���
m − �e���1 − e−��2�
m−1

�9a�

=a
m − b
m−1, �9b�

where

a = ��1 − e���−�2�� + e��, �10a�

b = �e���1 − e−��2� . �10b�

We can write Eq. �9b� as a two-dimensional �2D� map in
matrix form as



m+1


m
� = 
a − b

1 0
�
 
m


m−1
� . �11�

The eigenvalue equation for the Jacobian matrix is


2 − a
 + b = 0, �12�

with the solutions


� = 1
2 �a � �a2 − 4b� . �13�

The synchronized state, 
=0, is stable if both the solutions
satisfy 	
�		1. The detailed analysis of the stability condi-
tions is given in Appendix A.

Figure 2 shows the stability region in the �2 /�-� plane.
The lower limit of stability is always �l=1. For smaller val-
ues of �2 ��2��2p�, the upper limit of stability is given by
�Eq. �A6��

�u =
e�� + 1

2e���−�2� − e�� − 1
, �14�

while for larger values of �2 ��2p��2��� it is given by �Eq.
�A8��

�u =
e−��

1 − e−��2
. �15�

The maximum value of �p is given by the intersection of the
two curves �14� and �15�,

�p =
3 + e��

e�� − 1
. �16�

The corresponding �2p value is given by

�2p =
�p��p + 3�
��p + 1�2 . �17�

We also obtain �2max, the maximum allowed value of �2 for
the stability of the synchronized state �Eq. �A9��. A general
expression for �2max is obtained in Sec. III B �Eq. �29��.

B. �2��

Let �2=k�+�2�, k=0,1 , . . ., where �2�	�. Consider solu-
tion �6� in the interval m�� t� �m+1��. Then for t= �m
+1��−�2�= �m+k+1��−�2, we get


m+k+1 = �
m + Cme��m+1��−��2�. �18�

Hence Eq. �6� becomes


 = �
m + �
m+k+1 − �
m�e��t−�m+1��+�2��. �19�

For �m−1��� t�m� we have
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FIG. 2. This figure shows the stability region of the synchro-
nized state �
=0 solution of Eq. �9�� in the �2 /�-� plane. The solid
line is for ��=0.25 and the dashed line is for ��=0.5. The lower
limit of stability is �l=1 �dotted line�. For smaller values of �2

��2p, the upper limit of stability is given by Eq. �14� while for
larger values of �2 ��2p��2��� it is given by Eq. �15�. The peak
values are �0.0530. . . /0.25. . . =0.212,15.083. . .� for ��=0.25 and
�0.088. . . /0.5=0.176. . . ,7.169. . .� for ��=0.5 �see Eqs. �16� and
�17��. For ���2�2� the upper limit of stability is given by Eq.
�27�. The maximum value of ��2 is 0.74 for ��=0.5.
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 = �
m−1 + �
m+k − �
m−1�e��t−m�+�2��. �20�

Equating solutions �19� and �20� for t=m�, and simplifying,
we get the following recursion relation:


m+k+1 = e��
m+k − ��e���−�2�� − 1�
m − �e���1 − e−��2��
m−1.

�21�

This gives a map of dimension k+2. In matrix form, the map
can be expressed as

�

m+k+2


m+k+1


m+k

]


m


 =�
c 0 . . . b1 b0

1 0 . . . 0 0

0 1 . . . 0 0

] ]

0 0 . . . 1 0

�


m+k+1


m+k


m+k−1

]


m−1


 , �22�

where c=e��, b1=��e���−�2��−1�, and b0=�e���1−e−��2��. The
eigenvalue equation is


k+2 − c
k+1 + b1
 + b0 = 0. �23�

For k=0, the map of Eq. �22� reduces to the 2D map of Eq.
�11�. In general the behavior of the largest magnitude 
 is as
shown in Fig. 8�b�, i.e., the stability range is from �l=1 until
the complex 
 has a magnitude of 1.

1. k=1, i.e., ���2�2�

For k=1, we have a three-dimensional �3D� map. The
eigenvalue Eq. �23� becomes


3 − c
2 + b1
 + b0 = 0. �24�

The lower stability limit is �l=1. The upper stability limit
can be obtained by noticing that when the magnitude of the
imaginary 
 becomes 1, the two imaginary eigenvalues can
be written as 
=e�i� and the above equation has a factor

2−2 cos���
+1. This gives the condition

b0
2 + cb0 + b1 − 1 = 0. �25�

Using this we get a quadratic equation for �,

a2�2 + a1� − 1 = 0, �26�

where a1=e2���1−e−��2��+e���−�2��−1 and a2=e2���1−e−��2��2.
One solution of this equation gives the upper stability limit
for �,

�u =
1

2a2
�− a1 + �a1

2 + 4a2� . �27�

This upper stability limit is shown in Fig. 2 for ���2�2�.
We can also obtain �2max� , the maximum value of �2� for

which synchronization is possible. This happens when there
is always an eigenvalue with magnitude greater than 1, i.e.,
when �l=�u=1. By setting �u=�l=1 in Eq. �26�, we get

a1+a2=1. However a better condition is obtained if we note
that for �u=�l=1, Eq. �24� has two degenerate solutions 

=1, i.e., Eq. �24� has a factor 
2−2
+1. This gives the
conditions b0=2−c and 1−b1=2�2−c�. First condition gives

��2max = �� + ��2max� = �� − ln 2 − ln�1 − e−��� . �28�

2. General k

For a general k, getting explicit solutions for �u is not
easy. But it is possible to get an expression for �2max� . We use
the condition that for �u=�l=1, Eq. �23� has two degenerate
solutions 
=1. This gives the condition b0=1+k−kc. Sim-
plifying, we get

��2max = k�� + ��2max� = k�� − ln�k + 1� − ln�1 − e−��� .

�29�

For k=0, this equation reduces to Eq. �A9� and for k=1 it
reduces to Eq. �28�. Figure 3 shows the plot of ��2max as a
function of � for different k values. For each k the plot is for
the range ��k ,�k+1� where �k is defined by k�k=�2max and
from Eq. �29� we get �k=ln��k+1� /k�.

3. �2=n�

In this case it is not possible to obtain the stability range
for the synchronized state in terms of �. However, it is pos-
sible to obtain an explicit expression for �2max as �the de-
tailed calculations are given in Appendix B�

��2max = ��/�exp���� − 1� . �30�

The dashed line in Fig. 3 corresponds to Eq. �30�. It gives the
correct �2max only for �2=n�.

IV. LYAPUNOV EXPONENTS

Since we have several time scales, one has to be careful in
calculating the Lyapunov exponents. We adapt the procedure
introduced by Farmer �39� and discretize at intervals, h,
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FIG. 3. The figure plots the maximum �2max as a function of ��
�solid line�. Here, �2max, k=0,1 ,2 , . . ., is given by Eq. �29� and for
each k the range of � is ��k ,�k+1�. The dashed curve passes through
the values �2max=k�k=k ln��k+1� /k� �Eq. �30��. The inset shows
the same plot with �� range �0,5�.
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where h is the time step of the integration. For these calcu-
lations we choose �1=0 and first consider the case 0��2
	�. Since we have a variable time delay, the procedure of
Farmer �39� needs a modification. We introduce the discrete
difference vector, ��k�, according to the time scale � and it is
defined by

��k� = �
��k − 1�� + h�,
��k − 1�� + 2h�, . . . ,
�k���

= ��1,�2, . . . ,�N� , �31�

where N=� /h. Since 
 is n dimensional, � is nN dimen-
sional. Here, k is the time index. The vector � evolves ac-
cording to Eq. �4� and therefore the vector ��k+1� is ob-
tained from ��k� as follows:

�1�k + 1� = �N�k� + �f��x�k� + �2���N�k� − ��N−j�k��h ,

�2�k + 1� = �1�k + 1� + �f��x�k� + �2 + h���1�k + 1�

− ��N−j�k��h ,

]

�N�k + 1� = �N−1�k + 1� + „f��x�k� + �2 + �N − 1�h��

��N−1�k + 1� − ��N−j�k�…h , �32�

where j=�2 /h. Each time step k to k+1 advances the time by
�. To obtain the transverse Lyapunov exponents, one starts
with a set of orthonormal vectors ��i��0�, with i=1,2 , . . . as
initial conditions and evolve them according to the above
equations and orthonormalize them at each step. The i th
Lyapunov exponent is then given by
limT→��1 / �T����k=1

T ln�ai�k��, where ai is the normalization
factor for the ith vector. In our case this procedure can yield
only n+ l transverse Lyapunov exponents where l is the num-
ber of nonzero elements in the diagonal matrix �, indicating
that the dimension of our coupled system is 2n+ l.

For �2��, it is necessary to define higher-dimensional
vectors, e.g., when ���2	2�, the discretization is to be
done over the interval 2�, and hence the dimension of the
difference vector � must be 2nN. The equations for the gen-
eral case are included in Appendix D.

V. NUMERICAL ANALYSIS

We choose two standard systems, Rössler and Lorenz, to
confirm the main results obtained in Secs. III and IV. In the
case of Rössler system given in Eq. �2�, two identical sys-
tems are coupled in the drive response mode via the coupling
scheme explained in Eq. �1�. Starting from random initial
conditions and choosing the system parameters in the chaotic
region �a=0.15, b=0.2, and c=10.0�, they are evolved for
200 000 units with a time step of 0.01. The correlation

coefficient C= �y1�t�x1�t+�2�� /��x1
2�t���y1

2�t�� between x1�t�
and y1�t� shifted by the effective �2= 	�2−�1	 �hereafter re-
ferred to as �2 itself� is calculated using the last 5000 values.
The region of stability of the synchronized state is isolated as
the region where C=0.99 and boundaries of stability fixed
when C goes below this value.

Taking �=0.5, �2 is varied from 0 to 1.0 units in steps of
0.01. For each value of �2, the coupling strength � is in-
creased in steps of 0.005. The appropriately shifted correla-
tion coefficient is calculated and using the criterion men-
tioned above, the lower and upper limits of stability are
found out. The results are plotted in the parameter plane �2-�
in Fig. 4. The overall behavior agrees with the theoretical
analysis carried out in Sec. IV. The upper limits obtained by
the stability analysis given in Eqs. �14�, �15�, and �27� for the
different relative ranges of �2 are calculated for a typical
value of �=0.65 and shown as a solid line. For values of
�2	0.3 or ��3.0, the agreement is good although for lower
values, there is deviation. For lower values of � we need
larger values of � to obtain a better fit �not shown in the
figure�.

By fixing the coupling �=0.8, we vary the reset time � in
the range �0,2.0� in steps of 0.01 and in each case the maxi-
mum value of �2 for the stability of synchronization is cal-
culated using the same criterion. The results are shown in
Fig. 5. The �2max obtained from theory and shown in Fig. 3
are reproduced here for comparison. The numerical values
are found to support the results of the theoretical analysis
very well. We note that here the � dependence cancels out,
and hence the agreement with the theory is much better than
that for the �2-� plots.

Using the procedure described in Sec. IV, we compute the
Largest Transverse Lyapunov Exponent �LTLE� for the range
of � values �0.1,8.0� and �2 in the range �0,0.8� with �=0.5.
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8

7

6

5

4

3

2

1

0

FIG. 4. The limits of stability of the synchronized state of two
chaotic Rössler systems in the parameter plane �2-�. The solid line
is the limits obtained from the stability analysis for �=0.65. The
agreement is good for values of ��3.0.
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The contour plot of the LTLE values is shown in Fig. 6. The
stability curves in Fig. 4 obtained by calculating the correla-
tion is found to be in reasonable agreement with the zero
contour of LTLE �see Figs. 4 and 6�.

We consider next two Lorenz systems, where the x system
is given by

ẋ1 = a�x2 − x1� ,

ẋ2 = cx1 − x2 − x1x3,

ẋ3 = − bx3 + x1x2. �33�

This is coupled to an identical y system using the same

scheme. Choosing parameter values for chaotic Lorenz as
a=10.0, b=8 /3, and c=28.0, the analysis is repeated as in
the case of Rössler. Here the time step chosen is 0.001 and
�=0.05. The �2 values are varied in the range �0,0.1� and the
stability limits of � isolated using the criterion, correlation
C=0.99 for stability. For the same range of parameters, we
compute the LTLE and its zero crossing is taken as the limit
of stability. Both these results are given in the same figure,
Fig. 7, along with the curves of stability from theory for �
=0.0 �solid line�. The dotted lines indicate the values for zero
LTLE and the crosses denote the stability limits obtained
from correlation analysis.

VI. CONCLUSION

We introduce a coupling scheme with varying time delay
for synchronization of two systems with delay or anticipa-
tion. The scheme has the advantage that synchronization can
be achieved with intermittent information from the driver in
intervals of reset that can be prefixed. This also makes a
detailed stability analysis analytically possible because the
error dynamics becomes discrete. By assuming an average
effective Lyapunov exponent �, the stability regions and lim-
its of stability in the parameters of coupling strength and
anticipation time are worked out for specific cases. We dem-
onstrate the method by numerical simulations in two stan-
dard systems, Rössler and Lorenz. The general features of
the stability region in parameter space match with the theo-
retical stability analysis, but more precise matching with the
numerical data is not possible. This is understandable since
in the analytical calculations f� is replaced by an effective �
and also coupling in all components of x and y is assumed
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FIG. 5. The maximum values of �2 for which anticipatory syn-
chronization is stable in two coupled Rössler systems is shown as a
function of the reset time �. The solid and dotted lines are the
similar values from theory reproduced from Fig. 3 for comparison.
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�−0.9,1.2� in steps of 0.3. The contour of zero LTLE agrees well
with the stability curves obtained from correlations, shown in Fig.
4.
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while in numerical calculations only one component is
coupled. The agreement between the theory and numerical
data is reasonably good for the �2max-� plot, since the � de-
pendence cancels out. The scheme for computation of the
transverse Lyapunov exponents for this type of coupling is
presented and tried out for both Rössler and Lorenz systems.
The range of stability based on this is found to agree well
with that obtained from the numerical calculations based on
correlations.

The availability of three time scales in the dynamics is
suggestive of potent applications especially in secure com-
munication. We propose that this technique will be especially
successful with a bichannel transmission �40� where one
channel, which is part of the state space of the chaotic trans-
mitter �driver�, is used to synchronize with the receiver �re-
sponse� and the other forms the message along with the cha-
otic signal from a different part of the state space of the
driver. Here since the encrypted information or cipher text is
not used as the synchronizing signal, it can be made really
complex and secure. In this context our method of synchro-
nization has the definite advantage that the synchronization
channel needs to be transmitted only at intervals fixed by the
reset time which itself forms part of the key space. Less
amount of transmission leads to less load on the channel,
bandwidth savings, and requirement of noise-free channel
for short times. Moreover, the enhancement in the dimen-
sionality of the key space and also less amount of transmitted
signal can lead to an increase in security. The stability analy-
sis reported in this paper along with the numerical simula-
tions for standard systems helps one to fix the accessible
regions of the key space for better key management. This is
being worked out and will be published elsewhere.
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APPENDIX A: CASE 0��2��

Here we analyze the eigenvalues 
� of map �11� given by
Eq. �13� to obtain the stability conditions. These stability
conditions are shown in Fig. 2. The synchronized state, 

=0, is stable if both the eigenvalues satisfy 	
�		1.

1. �2=0

For this case b=0. Hence, the 2D map in Eq. �11� be-
comes a one-dimensional �1D� map given by


m+1 = 

m, �A1�

where 
=��1− �1− 1
� �e���. Figure 8�a� shows 
 as a function

of 1 /�. The fixed point 
=0 is stable provided that 	
		1.

This gives the following limits on � for the stability of the
synchronized state:

1 	 � 	
1 + e−��

1 − e−�� . �A2�

2. 0	�2	�

For 0	�2	�, the eigenvalues 
� �Eq. �13�� display a
rich behavior. Three different scenarios are possible. These
are shown in Figs. 8�b�–8�d� which show 
 as a function of
1 /�. To determine the limits of stability of the solution 

=0 we consider the following cases.

a. �=1 (a2−4b�0,a�0)

Setting 
=1 in Eq. �13�, we get 2=a��a2−4b. This re-
duces to

1 = a − b . �A3�

Using expressions �10a� and �10b� for a and b, we get the

c
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b

FIG. 8. This figure shows the eigenvalues 
 as a function of
1 /�. �a� ��=0.25 and ��2=0. Here, 
=��1− �1− 1

� �e��� �see Eq.
�A1��. �b� ��=0.25 and ��2=0.02. The largest 
 �solid line� starts
from a value greater than 1 for 1 /��1, crosses 1 at 1 /�=1, and
continues until it meets the dashed line from below �here a2−4b
=0�. Then 
 becomes complex and the dotted line shows the mag-
nitude 	
	. This continues until we have a2−4b=0 again. This point
is just above the meeting point of solid and dashed lines on the
negative side. For smaller values of 1 /�, 
 again become real �but
now negative� and the largest 
 in magnitude jumps to the dashed
line bellow. Hence the stability range is from �=1 until the point
where 
=−1. �c� ��=0.25 and ��2=0.1. This figure is similar to
�b�, but here the dotted line �
 complex� crosses the magnitude one
before jumping to the negative value. Hence the stability range is
now from �=1 until the point where the dotted line crosses one or
the complex 
 has a magnitude of 1. Crossover from the behavior
�b� to �c� occurs at the peak value, �p, as seen in Fig. 2. �d� ��
=1.0 and ��2=0.7. Here, �2��2max=0.458. . .. Hence, the largest 	
	
is always greater than 1.
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lower limit on the stability as

�l = 1. �A4�

b. �=−1 (a2−4b�0,a	0)

Setting 
=−1 in Eq. �13�, we get −2=a��a2−4b which
reduces to

1 + a + b = 0. �A5�

Using expressions �10a� and �10b�, we get

�u =
e�� + 1

2e���−�2� − e�� − 1
. �A6�

The above expression gives the upper limit of stability for
smaller values of �2. For larger values of �2, we use the
condition 	
	=1 which is considered in Appendix A 2 c.

c. ���=1 (a2−4b	0, � is complex)

Setting 	
	=1 �
 is complex� in Eq. �13�, we get 1

= 1
2
�a2− �a2−4b� which reduces to

b = 1. �A7�

Substituting from Eq. �10b�, we get the upper limit on the
stability as

�u =
e−��

1 − e−��2
. �A8�

The above expression can also be used to determine the
maximum �2max for a given �. This happens when there is
always an eigenvalue with magnitude greater than 1, i.e.,
when �l=�u=1. From Eq. �A8� we get the following expres-
sion:

��2max = − ln�1 − e−��� . �A9�

Note that �u=1 in Eq. �A6� gives the same �2max as in Eq.
�A9�. Figure 8�d� shows 
 as a function of 1 /� for �2
��2max where the synchronized state is not stable.

d. Peak

The peak value �p is given by the intersection of Eqs.
�A6� and �A8� and leads to the conditions

b = 1 and a + 2 = 0. �A10�

From b=1, we have

e−��2 = 1 −
1

�
e−��. �A11�

Substituting this in a+2=0, we get

�p =
e�� + 3

e�� − 1
. �A12�

The corresponding �2 value is given by

��2p = �� + ln�e�� + 3� − 2 ln�e�� + 1� . �A13�

Eliminating � from Eqs. �A12� and �A13� gives Eq. �17�.

3. �2=�

This is a simple case where a and b in Eqs. �10a� and
�10b� reduce to a=c=e��, b=d=��e��−1�. The cases in Ap-
pendix A 2 a and A 2 c are applicable, and hence the stability
condition for 
=0 is

1 	 � 	
1

e�� − 1
. �A14�

APPENDIX B: CASE �2=n�

This corresponds to the case �2�=0 in Sec. III B. Using Eq.
�21�, we get the following recursion relation �note that n=k
+1 gives the correct correspondence�:


m+n+1 = e��
m+n − ��e�� − 1�
m �B1a�

=c
m+n − d
m, �B1b�

where c=e�� and d=��e��−1�. This leads to an
�n+1�-dimensional map. This map can also be obtained di-
rectly from solution �6� noting that for t=m� and t= �m
+1�� we get 
m+n and 
m+n+1, respectively. In matrix form

�

n+1


n


n−1

]


1


 =�
c 0 ¯ 0 − d

1 0 ¯ 0 0

0 1 ¯ 0 0

] ] ] ] ]

0 0 ¯ 1 0

�


n


n−1


n−2

]


0


 . �B2�

The eigenvalue equation is


n+1 − c
n + d = 0, �B3�

where n�1.
The following general conclusions can be arrived by us-

ing Geršgorin disks. There is one disk with its center at c and
radius d and n disks with their center at 0 and radius 1. All
the eigenvalues lie within these disks. For �	1, c�d+1.
Hence, the disk with its center at c is disjoint from the other
disks. Thus one root which lies in this disk must always have
a magnitude greater than 1. Hence, the lower limit of stabil-
ity is �l=1.

For n=1, Eq. �B3� becomes a quadratic equation. This is
discussed in Appendix A 3.

1. n=2

Equation �B3� becomes a cubic equation,
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3 − c
2 + d = 0. �B4�

At the upper stability limit, 
 is complex with 	
	=1. Thus,

2−2 cos���
+1 is a factor where 
=e�i�. Using this con-
dition we get the relation

d2 + cd = 1. �B5�

This gives a quadratic equation in �,

�e�� − 1�2�2 + e���e�� − 1�� − 1 = 0. �B6�

Using the correct solution the stability range is

1 	 � 	
1

2�e�� − 1�
��e2�� + 4 − e��� . �B7�

The maximum �2max is obtained in Appendix B 2.

2. Any n

For a general n it is not possible to obtain the stability
range for the synchronized solution. It is easy to see that the
maximum �2max is obtained if there are two degenerate ei-
genvalues of Eq. �B3� equal to 1 at �=1. This is possible if
c=1 /n, d=1+1 /n. Using the explicit form of c or d and n
=�2max /�, we get Eq. �30� for �2max.

APPENDIX C: NEGATIVE �

If the Lyapunov exponent � is negative, then Eq. �5� can
be written as


̇ = − 	�	
 − ��
m=0

�

��m�,�m+1���
m. �C1�

The analysis is similar to that for positive �. Here, we sum-
marize the results.

1. 0��2��

For 0��2��, Eq. �C1� leads to the recursion relation �see
Eq. �9��


m+1 = a
m − b
m−1, �C2�

where

a = − ��e	�	��2−�� − 1� + e−	�	�, �C3a�

b = �e−	�	��e	�	�2 − 1� , �C3b�

where we define �=� / 	�	 as the normalized dimensionless
coupling constant.

a. �2=0

For �2=0, b=0. The stability limits for the synchronized
state are �see Eq. �A2��

− 1 	 � 	
1 + e−	�	�

1 − e−	�	� . �C4�

b. 0	�2��

In this case Eq. �C2� leads to a 2D map as for the positive
�. The eigenvalue equation and the solutions are the same as
Eqs. �12� and �13� with a and b defined by Eqs. �C3a� and
�C3b�.

The lower stability limit is always �l=−1. For smaller
values of �2 ���2p�, the upper limit of stability is given by
�see Eq. �14��

�u =
1 + e−	�	�

1 + e−	�	� − 2e	�	��2−�� , �C5�

while for larger values of �2 ��2p��2��� it is given by �Eq.
�15��

�u =
e	�	�

e	�	�2 − 1
. �C6�

It is interesting to note that for very large values of the cou-
pling constant, the synchronized state is unstable. The maxi-
mum value of �p is given by the intersection of the two
curves �C5� and �C6�,

�p =
3e�� + 1

e�� − 1
. �C7�

The corresponding �2p value is determined by the relation

	�	�2p = 	�	� + 2 ln�1 + e−	�	�� − ln�3 + e−	�	�� . �C8�

c. �2=�

For �2=�, the stability range is

− 1 	 � 	
1

1 − e−	�	� . �C9�

2. �2��

Let �2=k�+�2�, k=0,1 , . . ., where �2�	� as for the case of
positive �. Equation �C1� leads to a map of dimension k+2.
The eigenvalue equation is


k+2 − c
k+1 + b1
 + b0 = 0, �C10�

where c=e−	�	�, b1=��1−e	�	��2�−���, and b0=�e−	�	��e	�	�2�−1�.
For k=0, we recover the case 0	�2��.

For k=1, i.e., ���2�2�, we have a 3D map. The lower
stability limit is �l=−1. The upper stability limit is

�u =
1

2a2
�a1 + �a1

2 + 4a2� , �C11�

where a1=e−2	�	��1−e	�	�2��+e	�	��2�−��−1 and a2=e−2	�	��e	�	�2�

−1�2. The stability limits are plotted in Fig. 9.
We have done numerical analysis for negative � using

two Rössler systems in the periodic region for c=2.2. The
stability limits for synchronization in the �2-� plane in this
case is given in Fig. 10. The solid line is the curve from
theory with �=0.0. The behavior of the numerical results in
general agrees with the theoretical analysis. However, exact
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fit is not obtained for any negative �. Surprisingly, the fit is
better for positive � with equations Eqs. �14� and �15� �dot-
ted line�. The reason for this behavior is not clear.

3. �2max

The condition for obtaining the maximum value �2max is
that �l=�u. For negative �, we have �l=−1 and �u always
remains positive. Hence, unlike the case of positive �, the
condition for obtaining �2max is never satisfied and synchro-
nized state is possible for any �2 or �2max that is infinite.

4. �2=n�

This corresponds to the case �2�=0 of Appendix C 2. The
eigenvalue equation is �see Eq. �B3��


n+1 − c
n + d = 0, �C12�

where n�1 and c=e−	�	� and d=��1−e−	�	��.
The following general conclusions can be arrived at using

the Geršgorin disks. There is one disk with its center at c and
radius 	d	 and n disks with its center at 0 and radius 1. All the
eigenvalues lie within these disks. For �	1, d	 �1−c�.
Since c	1, the disk with its center at c lies within the circle
	
	=1. Hence, all the roots of Eq. �C12� have magnitude less
than 1 and the synchronized state is stable. Thus for any n
there will be range of � values for which the synchronized
state is stable. This supports the conclusion reached in Ap-
pendix C 3 that �2max is infinite.

For n=1, Eq. �C12� becomes a quadratic equation. This is
discussed in Appendix C 1.

For n=2 we have a cubic equation. The stability range is

− 1 	 � 	
1

2�1 − e−	�	��
��e−2	�	� + 4 − e−	�	�� . �C13�

APPENDIX D: COMPUTATION OF LYAPUNOV
EXPONENTS

Here we give the scheme for calculating the Lyapunov
exponents for the general case when �m−1����2	m�. Let
N=� /h and j=�2 /h. We consider the discrete difference vec-
tor

��k� = �
��mk − m�� + h�,
��mk − m�� + 2h�, . . . ,


��mk − m + 1���,


��mk − m + 1�� + h�,


��mk − m + 1�� + 2h�, . . . ,
�mk���

=�D1,D2, . . . ,DN,DN+1, . . . ,DmN� . �D1�

Here � is nmN dimensional. The evolution equations are

�1�k + 1� = �mN�k� + �f��x�mk� + �2���mN�k� − ��mN−j�k��h ,

�2�k + 1� = �1�k + 1� + �f��x�mk� + �2 + h���1�k + 1�

− ��mN−j�k��h ,

]

�N�k + 1� = �N−1�k + 1� + „f��x�mk� + �2 + �N − 1�h��

��N−1�k + 1� − ��mN−j�k�…h ,
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FIG. 10. The maximum values of coupling � for two coupled
Rössler systems in the periodic region. The solid curve is for the
values from theory reproduced from Fig. 9 for a value of �=0.0.
The agreement is better with the curves in Fig. 2 �dotted line� for a
value of �=0.6.
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FIG. 9. The stability region of the synchronized state in the
	�	�2-� plane. The solid line is for ��=−0.25	0 and the dashed
line is for ��=−0.5. The lower limit of stability is �l=−1 �dotted
line�. For smaller values of �2��2p, the upper limit of stability is
given by Eq. �C5� while for larger values of �2 ��2p��2��� it is
given by Eq. �C6�. The peak values are �0.072. . . /0.25. . .
=0.29,17.083. . .� for ��=−0.25 and �0.165. . . /0.5
=0.33. . . ,9.16. . .� for ��=−0.5 �see Eqs. �C7� and �C8��. For �
��2�2� the upper limit of stability is given by Eq. �C11�. We note
that the stability limits have a similar behavior to that of Fig. 2 for
positive �.
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�N+1�k + 1� = �N�k + 1� + „f��x��mk + 1�� + �2��

��N�k + 1� − ���m+1�N−j�k…�h ,

�N+2�k + 1� = �N+1�k + 1� + „f��x��mk + 1�� + �2 + h��

��N+1�k + 1� − ���m+1�N−j�k…�h ,

]

�iN�k + 1� = �iN−1�k + 1� + „f��x��mk + i − 1�� + �2

+ �N − 1�h���iN−1�k + 1� − ���m+i−1…N−j�k��h ,

�iN+1�k + 1� = �iN�k + 1� + „f��x��mk + i�� + �2��

��iN�k + 1� − ���m+i�N−j�k…�h ,

]

�mN�k + 1� = �mN−1�k + 1� + „f��x��mk + m − 1�� + �2

+ �N − 1�h���mN−1�k + 1� − ���2m−1…N−j�k��h .

�D2�

Each evolution of � advances the time by m�. The transverse
Lyapunov exponents are calculated using the standard or-
thonormalization procedure. The number of transverse
Lyapunov exponents that can be calculated is n+ml, indica-
tion that the dimension of the coupled system is 2n+ml.
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